2021 SCSG GI SYMPOSIUM

Best of DDW 2021: IBS

Anthony Lembo, MD Professor of Medicine, Harvard Medical School Beth Israel Deaconess Medical Center Boston, MA Subtitle

Disclosures

- Honorarium
 - Ironwood
 - Takeda
 - Mylan
 - Bayer
 - Shire
 - Arena
 - Orphomed
 - Gemelli Biotech

PLos one

Research Paper

Placebos without Deception: A Randomized Controlled Trial in Irritable Bowel Syndrome

Ted J. Kaptchuk^{1,2}*, Elizabeth Friedlander¹, John M. Kelley^{3,4}, M. Norma Sanchez¹, Efi Kokkotou¹, Joyce P. Singer², Magda Kowalczykowski¹, Franklin G. Miller⁵, Irving Kirsch⁶, Anthony J. Lembo¹

Open-label placebo vs double-blind placebo for irritable bowel syndrome: a randomized clinical trial

Anthony Lembo^{a,*}, John M. Kelley^{b,c}, Judy Nee^a, Sarah Ballou^a, Johanna Iturrino^a, Vivian Cheng^a, Vikram Rangan^a, Jesse Katon^a, William Hirsch^a, Irving Kirsch^c, Kathryn Hall^{c,d}, Roger B. Davis^{c,e}, Ted J. Kaptchuk^{c,e}

IBS-SSS

Are They Side Effects? Non-specific Symptoms Reported At The End Of A Randomized Controlled Trial Are Often Present At Baseline

Rafla Hassan¹, Sarah Ballou¹, Vanessa Yu¹, Vikram Rangan¹, Nee, Judy¹ Johanna Iturrino¹, Ted J. Kaptchuk¹, Anthony Lembo¹ ¹ Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA

- Adverse events (AEs) clinical trials often use open-ended questions to assess AEs
- This approach is not validated, is prone to bias, can underestimate the number of actual symptoms and does not account for symptoms present at baseline
- We aimed to evaluate now extraintestinal symptoms (EIS) change over time in a RCT
- 15 nonspecific EIS assessed baseline and end of study (week 6). Symptom burden: summing severity (0-5).
- 219 IBS patients (73% women)

<u>Conclusions:</u> Non-specific symptoms are common and usually more severe at baseline.

Commonly reported AEs should be assessed at baseline to better assess their relationship to treatment

Dietary Considerations for IBS

- "Traditional IBS diet"
 - 3 meals and <3 snacks /day : do not over eat!
 - Reduce fatty or spicy foods, coffee, alcohol, onions, cabbage and beans
 - Avoid soft drinks, chewing gum, sweeteners that ends in –ol
 - Soluble fibers intake evenly during the day
- Low-FODMAP
- Gluten Free

Gluten Free Diet for IBS: Clinical Trials

	GFD)	Con	trol		Risk ratio		F	lisk r	atio	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95% Cl		M–H, ra	andor	m, 95% Cl	
Biesiekierski 2011	10	19	14	20	52.2%	0.75 (0.45, 1.26)			-		
Shahbazkhani 2015	6	37	26	35	47.8%	0.22 (0.10. 0.47)		-	-		
Total (95% CI)		56		55	100.0%	0.42 (0.11, 1.55)					
Total events	16 0.70: Chi2	- 9 29	40 df = 1 (P	- 0.004	1- 12 - 00%						
Test for overall effect:	Z= 1.30 (F	= 0.20, = 0.19	ui = 1 (F)	- 0.004	/, /* = 00 %		0.01	0.1	1	10	100
			,				F	avors GFD)	Favors con	trol

Patients who responded to a GFD randomized to continue GFD or receive diet "spiked" with gluten

There is insufficient evidence to recommend a GFD to reduce IBS symptoms

•

FODMAPs, but not Gluten, Elicit Modest Symptoms of IBS: Double-Blind, Placebo-Controlled, Randomised 3-way Crossover Trial

Per M. Hellström, Elise Nordin, Carl Brunius, Rikard Landberg

110 IBS patients(96 women; all subtypes)

No difference in other components of IBS-SSS

Approximately 50% higher amounts than typical Swedish diet

Conclusions:

Modest symptom increase with FODMAP, No significant increase with gluten

What are FODMAPs?

- Fermentable oligo-, di-, monosaccharides and polyols
- Fruits with fructose exceeding glucose
 - Apples, pears, watermelon

• Fructan containing vegetables

- Onions, leeks, asparagus, artichokes
- Wheat based products
 - Bread, pasta, cereal, cake, biscuits
- Sorbitol and lactose containing foods
- Raffinose containing foods
 - Legumes, lentils, cabbage, brussels sprouts

Eswaran & Chey, GI CI North Am 2011;40:141 Shepherd, et al, Clin Gastro Hepatol 2008;6:765 Gibson & Shepherd. J Gastro Hepatol 2010;25:252

Differing Effects of FODMAPs in the GI Tract

Fructose distends the small bowel with water

Fructan distends the colon with gas

Common fructans

Wheat including bread, pasta, etc., onions,, garlic, barley, brussels sprouts, cabbage, broccoli,, artichoke, inulin

Murray et al. Am J Gastroenterol 2014 Jan;109(1):110-9

3 Phases of the Low-FODMAP Diet

Elimination

Diagnose FODMAP sensitivity

Determine Sensitivities

Diversify the diet to improve adherence and reduce effects on the MB Personalize Find each patient's low FODMAP diet

Chey WD. Am J Gastroenterol 2016:111;366 Dolan R, et al. Exp Rev Gastroenterol Hepatol 2018;12:607

Examples of Studies Assessing the Elimination Phase of the Low-FODMAP Diet in IBS

Halmos EP, et al. Gastroenterology. 2014;146:67-75.

Böhn L, et al. Gastroenterology. 2015. doi: 10.1053/j.gastro.2015.07.054.

Low-FODMAP vs. mNICE Diet: IBS-D

No Differences between Low FODMAP and mNICE

Adequate Relief (>50% of the weeks) 52% vs. 41% (P=0.31)

Composite responders (abdominal pain and stool consistency) (P=0.13)

P values refer to the change WITHIN group comparing to baseline score

RCTs Evaluating the Low-FODMAP Diet for IBS

- 7 RCTs (n=397)
- Overall reduction in symptoms (RR 0.69; 95% CI 0.54, 0.88)
- RCTs comparing low FODMAP with control diets had the least magnitude of effect
- Overall quality of the data = "very low"
 - Most studies were high risk of bias
 - Heterogeneity between study designs
 - Imprecision in the estimate of effect

Dionne et al. Am J Gastroenterol 2018, online	early.
---	--------

	low FOD	MAP	Cont	rol		Risk Ratio	Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rand	om, 95% CI	
1.1.1 Low FODMAP	versus alte	rnative	diet						
Bohn 2015	19	38	20	37	20.4%	0.93 [0.60, 1.43]	-	-	
Eswaran 2016	27	50	26	42	26.7%	0.87 [0.62, 1.24]	-		
Staudacher 2017	22	51	33	53	24.3%	0.69 [0.47, 1.01]		-	
Subtotal (95% CI)		139		132	71.4%	0.82 [0.66, 1.02]	•	•	
Total events	68		79						
Heterogeneity: Tau ² Test for overall effect	= 0.00; Chi [.] :: Z = 1.77	P = 1.13 (P = 0.0	8, df = 2 08)	! (P = C	0.55); l² =	0%			
1.1.2 Low FODMAP	versus higl	h FODM	IAP						
McIntosh 2016	7	20	16	20	11.7%	0.44 [0.23, 0.83]			
Subtotal (95% CI)		20		20	11.7%	0.44 [0.23, 0.83]	•		
Total events	7		16						
Heterogeneity: Not a	pplicable								
Test for overall effect	t: Z = 2.55	(P = 0.0)	01)						
1.1.3 Low FODMAP	versus usu	al diet							
Halmos 2014	3	13	6	17	3.9%	0.65 [0.20, 2.13]			
Staudacher 2012	6	19	17	22	10.0%	0.41 [0.20, 0.82]			
Subtotal (95% CI)		32		39	13.9%	0.46 [0.25, 0.84]	+		
Total events	9		23						
Heterogeneity: Tau ²	= 0.00; Chi ^a	$^{2} = 0.4!$	5, df = 1	(P = C)	0.50); l ² =	0%			
Test for overall effect	z = 2.52	(P = 0.0)	01)						
1.1.4 FODMAP exclu	ision then l	FODMA	P versus	s place	bo				
Hustoft 2017	2	8	4	7	3.0%	0.44 [0.11, 1.71]		-	
Subtotal (95% CI)		8		7	3.0%	0.44 [0.11, 1.71]		-	
Total events	2		4						
Heterogeneity: Not a	pplicable								
Test for overall effect	z = 1.19	(P = 0.2)	23)						
Total (95% CI)		199		198	100.0%	0.69 [0.54, 0.88]	•		
Total events	86		122						
Heterogeneity: Tau ²	= 0.03; Chi ²	$^{2} = 8.0$	2, df = 6	5 (P = C	(.24); I ² =	25%	0.005 0.1	10	- 240
Test for overall effect	t: Z = 2.98	(P = 0.0)	003)				Favours [experimental]	Favours [control]	200
Test for subaroup dif	fferences: C	hi ² = 6.	26. df =	3 (P =	0.101 12	= 52.1%	. arears [experimental]	. arears [control]	

How Do FODMAPs Cause IBS Symptoms?

JCI The Journal of Clinical Investigation

FODMAP diet modulates visceral nociception by lipopolysaccharide-mediated intestinal inflammation and barrier dysfunction

Shi-Yi Zhou, ... , Yuanxu Lu, Chung Owyang

J Clin Invest. 2018;128(1):267-280. https://doi.org/10.1172/JCI92390.

Mast Cell Activation Leading to Colonic Barrier Dysfucntion Following High FODMAP Diet is Mediated via Lipopolysaccharide

Prashant Singh, Gintautas Grabauskas, Shi-Yi Zhou, Yawen Zhang, Chung Owyang

In the rodent Model:

High FODMAP causes intestinal barrier dysfunction through mast cell recruitment and activation

Mast cells are critical - mice deficient in Mast cells do not show intestinal barrier dysfunction to High FODMAP

In IBS-D, Iow-FODMAP improves: barrier dysfunction mast cell activation fecal LPS levels (Jm/gd) 6 20000-P=0.04 P=0.04 EU/m P=0.005 500-15000· TEER (Ohms.cm²) 400-300 Serum tryptase 10000 200 LPS 5000 100 -ecal IBS IBS+LFM Post-LFM IBS-D Post-LFM IBS-D

Low-FODMAP diet decreases mast cell activation via

Limitations of the Low FODMAP Diet

- High level of restriction
- Difficult to follow (best done with an expert dietitian)
- Potential nutritional deficiencies (i.e, removes many 'healthy' foods such as fruits and vegetables)
- Significant gut microbiota reduction
- No current predictors of response

Does the low-FODMAP diet need to be so restrictive?

Are all FODMAPs created equal? A blinded, randomized reintroduction trial to determine which FODMAPs drive clinical response in IBS patients

Shanti Eswaran; Prashant Singh; Samara Rifkin; Theresa Han-Markey, William D Chey ¹ Division of Gastroenterology, Department of Internal Medicine, Michigan Medicine

Double-blind Food Challenge

5 sequences over 7 days; 7 day washout 3 days of moderate FODMAP followed by 4 days higher FODMAP FOS 0.75 g/day -> 1.5 g/day fructose 10 g/day -> 21 g/day lactose 10 g/day -> 20 g/day sorbitol 5g/day -> 10g/day

45 IBS patients (95% women; all subtypes)

- Blinded reintroduction of fructans and galactans was associated with worsening of abdominal pain and/or bloating.
- These findings suggest that all FODMAPs are not equal and opens the door to trials evaluating the clinical benefits of a simplified low FODMAP diet in IBS patients.

Efficacy of a new approach to the reintroduction phase of the low-FODMAP diet in IBS patients

Karen Van den Houte, Esther Colomier, Zoë Mariën, Jolien Schol, Jasmien Van den Bergh, Julie Vanderstappen, Nelle Pauwels, Christophe Matthys, Tim Vanuytsel, Florencia Carbone, Jan Tack

400

350 300 250

SS- 200

150

100

50

Baseline

46 IBS patients (85% women all subtypes) IBS-SSS (baseline vs. 6 w Low-FODMAP: 305 -> 150 95% reported decrease IBS-SSS <u>></u> 50 points

+ : P<0.05 versus baseline • : P<0.05 versus strict diet		
Ţ Ţ,	FODMAP	% of patients
	Lactose	42
	Mannitol	54
	Sorbitol	29
	Fructans	54
verage Glucose Lactose Mannitol Sorbito Fructans GOS Fructose	GOS	33
	Fructose	25
	Glucose	29

Mannitol and fructans are most likely to increase symptoms Average number FODMAPs to increase symptoms = 2.7

Sucrase-Isomaltase Deficiency (SID)

- Often occurs together since *Sucrase -isomaltase* is synthesized in the enterocyte as a single glycoprotein chain and, after insertion in the brush-border membrane, is cleaved by pancreatic proteases into sucrase and isomaltase
- Prevalence of deficiency is not well know
 - Primary deficiency is inherited as autosomal recessive (CSID)
 - Prevalence of CSID: estimated to 0.05% to 0.2%, higher in Greenland, Alaska and Canada up to 10%
 - Secondary deficiency of SID : not well studied
- One study 35% (11/31) of patients with undergoing EGD for an evaluation of chronic diarrhea and/or abdominal pain had a decrease in sucrase-isomaltase enzyme activity on duodenal biopsies

Kim S, et al Digestive Diseases and Sciences (2020) 65:534–540

CSID Mutations are Associated with IBS

Two studies found CSID mutations more often in patients with IBS than controls

IBS	Controls			
22/1031 (2.1%)	10/856 (1.2%)			
88/2207 (4.0%)	928/33,370 (2.8%)			

A common SI variant (Val15Phe), which shows reduced enzymatic activity in vitro, is strongly associated with increased risk of IBS

Henström M, et al. Gut 2016;0:1–8. doi:10.1136/gutjnl-2016-312456 Garcia-Etxebarria, et al. Clin Gastroenterol Hepatol 2018;16:1673 Husein & Naim. Gut 2019, doi:10.1136/gutjnl-2019-319411

Reduced efficacy of Low FODMAP diet in patients with SID

- 46 pts from US RCT randomized to LFD
- Primary endpoint: Adequate relief of IBS symptoms
- SI gene variants analyzed
- In a separate analysis the number of gene variants present predicted nonresponse to LFD or mNICE

Zheng et al. *Gut* 2020;**69:**397-398

Prevalence of Sucrase-Isomaltase Deficiency in adults with Irritable Bowel Syndrome and Diarrhea: An interim analysis from a prospective US trial

<u>SW Chey MPH</u>¹, SL Eswaran MD¹, and WD Chey MD¹ ¹ Division of Gastroenterology, Department of Internal Medicine, Michigan Medicine

MICHIGAN MEDICINE

 AIM: Determine prevalence of SID in IBS-D using diasaccharidase enzyme activity

Table 1. Demographics and Baseline of Study Participants

Characteristic	Study Population (n:58)	SID-positive Population (n: 5)	
Average Age (years)	42.6	48.6	
Gender - n (%)			
Female	43 (74)	3 (60)	
Male	15 (26)	2 (40)	
Race - n (%)			
White/Caucasian	54 (93)	5 (100)	
Black/African American	1 (2)	0	
Hispanic/Latino	1 (2)	0	
Asian	1 (2)	0	
Other	1 (2)	0	
Diagnosis - n (%)			
IBS-D	39 (67)	3 (60)	
Functional Diarrhea	19 (33)	2 (40)	
Average BMI (kg/m ²)	30.4	26.5	
Treatment Naïve	29 (50)	0	

Figure 1. IBS-SSS Questionnaire** Data for Study Population and Domains

Conclusions:

1. SID was present in 9% of adults with IBS-D or Functional Diarrhea

2. Demographics/symptoms similar in those with and without SID

Exhaled Hydrogen Sulfide is Increased in Patients with Diarrhea: Results of a Novel Collection and Breath Testing Device

Mark Pimentel MD^{1,3}, Ava Hosseini BS¹, Christine Chang RN¹, Ruchi Mathur MD^{1,2}, Mohammed Rashid MD¹, Rashin Sedighi PhD, RN¹, Halley Fowler BS¹, Jiajing Wang MS¹, Ali Rezaie MD MSc^{1,3}

> ¹Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA. ²Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, CA. ³ Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA.

> > 98%

95%

- H2 and CH4 are currently measured on breath tests
- New detection device (Gemelli Biotech) measures H₂S
- IBS-C (n=124); IBS-D (n=15); healthy (n=47)
- H₂S ≥5ppm Sensitivity Specificity
 - IBS-D vs. healthy
 - IBS-D vs. IBS-C

Fi H	<mark>igur</mark> ₂S b	e 1: Con etween	nparing ma groups (P<	ximum 0.001)
	10 -		0	0
		0	0	T
hel	8 -		o	_ ◇
Max H2S Le	4 -	°	<u> </u>	
	2 -		•	
	o –	Healthy	Constipation	Diarrhea

68%

67%

Table 1: Symptom severity based on elevated H ₂ S			
	H₂S Negative (<5ppm)	H₂S Positive (≥5 ppm)	P-value
Symptoms	Mean±SD	Mean±SD	
Abdominal pain	9.2±20.0	50.8±42.6	0.0001
Bloating	12.2±22.7	56.3±39.2	0.0016
Constination	58+96	26.9+31.3	0.0171
Diarrhea	9.3±23.7	61.6±33.6	0.0005
Discharge of mucus from rectum	5.5±16.0	38./±3/.2	0.0015
Excess gas	10.5±21.0	53.1±40.5	0.0001
Incomplete evacuation	10.0±22.1	33.6±29.2	0.0021
Straining during bowel movement	4.8±10.7	30.7±36.5	0.0005
Urgency with bowel movement	11.8±27.0	74.8±28.5	0.0003
Symptom Combinations			
Diarrhea + Urgency with bowel movement	21.1±49.0	130.2±55.1	0.0004
Abdominal pain + Diarrhea	18.4±43.2	112.3±68.4	0.0001
Abdominal pain + Diarrhea + Urgency with bowel movement	30.3±67.9	175.9±87.3	<0.0001

A new gas collection system and novel 4-gas detection device was capable of measuring levels of H₂, CH₄, and H₂S (in addition to CO₂) in humans during clinical breath testing.

H₂S of ≥5ppm during breath testing was associated with diarrhea, abdominal pain, and urgency during breath testing.

H₂S was uncommonly found in patients with CH₄.

A cutoff of 5ppm for H₂S was the best predictor of diarrhea. However, normal subjects almost never exceeded 2 ppm of H₂S.

Predictors of Health Care Utilization in Patients with Functional Bowel Disorders

Vanessa Yu^{1,2}, Sarah Ballou¹, Rafla Hassan¹, Vikram Rangan¹, Judy Nee¹, Johanna Iturrino¹, Anthony Lembo¹ ¹ Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA ² Tufts University School of Medicine, Boston, MA, USA

- Patients with disorders of gut-brain interactions are high utilizers of health care.
- Direct and indirect costs related to disorders of gut-brain interactions are estimated to be \$21.0 and \$37.4 billion, respectively.
- Previous health care utilization studies lacked patient-level predictors.

434 patients completed the health care utilization questionnaire and met the criteria for IBS, FC, or RD (mean age 44 years, 79.5% female, and 73.5% IBS).

Patient-Reported Outcomes Measurement Information System (PROMIS) standardized t-score. Higher scores more severe symptoms.

Table 4. Multivariate regressions

Linear regres	sion predicting GI o	outpatient utilizati	on
	β	SE	Р
Age	0.01	0.01	0.18
Sex	-0.16	0.33	0.63
Abdominal pain	0.03	0.02	0.02
Constipation	0.01	0.02	0.44
Diarrhea	-0.004	0.02	0.81
Anxiety	-0.02	0.02	0.32
Depression	0.07	0.02	0.001
Sleep	0.03	0.02	0.04
R^2		0.11	
F		6.12, <i>P</i> < 0	0.0001

Effect of Abdominal on ED Visits for GL symptoms

WHAT IS NEW HERE

- Abdominal pain was a primary predictor of health care utilization.
- Severity of depressive symptoms was also a strong predictor.
- Altered bowel habits did not predict health care utilization.

Eosinophilic Gastrointestinal Diseases

Associated with activated eosinophils and mast cells

Eosinophilic GI disease are considered to rare however emerging evidence suggests that they may be more common

Symptoms are non-specific and overlaps with functional bowel disorders

Definition: Presence of > 30 eosinophils/hpf in at least five HPFs

Endoscopy and Systematic Biopsy of Patients with Chronic Gastrointestinal Symptoms Leads to High Discovery Rate of Patients Who Meet Histologic Criteria for Eosinophilic Gastritis and/or Eosinophilic Duodenitis

Nicholas J. Talley MD PhD^{*1}, Amol P. Kamboj MD², William D. Chey MD³, Henrik S. Rasmussen MD PhD², Brian E. Lacy MD PhD⁴, Ikuo Hirano MD⁵, Mirna Chehade MD MPH⁶, Nirmala Gonsalves MD⁵, Kathryn A. Peterson MD⁷; Anthony Lembo MD⁶; Colleen M. Schmitt MD MHS⁹; Marc E. Rothenberg MD PhD¹⁰, Robert M. Genta MD¹¹; Maria A. Pletneva MD PhD⁷; Kevin O. Turner DO¹²; Malika Pasha MBA², Evan S. Dellon MD MPH¹³, William J. Sandborn MD^{*14}

Prospective, multi-center trial using blinded centralized pathologists

<u>Results</u>

Histologic criteria for EG or EoD

45% (181/405) patients vs. 6% (2/33) asymptomatic control

Patients:

Chronic functional symptom (6 months) pain, n/v, diarrhea, bloating or early satiety IBS/Functional Dyspepsia

Controls:

Asymptomatic individuals

Protocol

8 biopsies stomach; 4 duodenum EG/EoD: <a>> 30 eos/hpf in 5 gastric or 3 duodenal hpf Mast cells: <a>> 30 mast cells/hfp in 5 gastric and 3 duodenal

EG and/or EoD appear to be more common than previously thought, and should be considered in patients with moderate-severe unexplained GI symptoms

Patient	Met Histologic ^a Criteri for EG and/or EoD n=181		
Mean age, years (range	45 (19-78)		
Female sex, %		73%	
White, %		85%	
Weight, median, kg		83	
	Cells/µL, median (IQR)	170 (100-250)	
Dieed eccinentile	Blood eos ≥250 cells/µL, %	27%	
Blood eosinophils	Blood eos ≥500 cells/µL, %	4%	
	Blood eos ≥1500 cells/µL, %	0%	
In musical ship E	kU/µL, median (IQR)	34 (14-103)	
Immunoglobin E	IgE ≥70 kU/µL, %	36%	
TSS [0-80], mean ±SD		31.3 ±11.2	
	GI symptoms, mean years	11	
History of	Atopy ^b , %	48%	
hnf	EoE, %	2%	

Emerging Treatments for Eosinophilic Disease

From: Evan Dellon, MD: Refractory EoE DDW 2021

- Anti-IL13 RPC4046 (phase 2 EoE complete)
- Anti-IL4r/IL-13 dupilumab (approved for atopic dermatitis, asthma, CRSNP; phase 3 EoE)
- Anti-siglec-8 AK002 (EG/EGE phase 3; EoE phase 2/3)
- Anti-IL-5r benralizumab (approved for eosinophilic asthma; investigatorinitiated EG/EGE; phase 2/3 EoE)
- Anti-TSLP tezepelumab (asthma phase 2)
- Anti-IL-15 proof of concept (Vicari, mABs, 2017)
- Anti-α4β7 integrin (vedolizumab; approved IBD) case reports in EoE/EGID (Kim, CGH 2018: Nhu A IG 2018: Taft CGH 2018: Grandinette DDS 2019: Reales DDS 2019 hut for natulizumah)

AK002 (lirentelimab)

