2023 SCSG GI SYMPOSIUM

and the particular and the second second

(New) Devices for Removing Polyps

Fady Youssef, MD, MS UC San Diego Division of Gastroenterology

• I do not have any disclosures.

- Devices for removal of diminutive and small colorectal lesions
- Distal attachment devices
- Detachable loop device
- Endoscopic powered resection device
- Full thickness resection device

Devices for Polyp Removal

- Diminutive (\leq 5 mm) and small (6-9 mm) polyps
 - Cold snare (CSP)
 - Cold biopsy forceps (CBF)
 - Hot snare (HSP)
 - Hot biopsy forceps (HBF) limited to tissue avulsion in EMR
- Electrocoagulation → thermal injury spread to deeper submucosa → delayed hemorrhage or perforation

Cold Revolution in Polypectomy

- Dedicated Cold snare
 - Thin, braided wire pattern (0.30 mm) with robust/stiff sheath → precise and clean polyp resection
 - May be more effective in tissue capture/transection than thicker wire traditional snares (0.40 mm and 0.47 mm)
 - Studies have shown mixed results of complete polyp resection for dedicated cold snare vs traditional snare:
 - Horiuchi et. al.: 91% vs 79%; p = 0.015
 - Din et. al.: 90.2% vs. 73.3%; p < 0.05
 - Dwyer et. al.: 98.4% vs. 95.4%; p = 0.16

Distinctive 1x3 braid pattern wire construction

Din et al. *Digestive Endoscopy*. 2015;27: 603–608;Dwyer et al. *Endoscopy International Ope*. 2017; 05: E1062–E1068; Horiuchi et al. *Gastrointestinal Endoscopy*. 2015; 82(4):686-692.

Cold Snare Polypectomy Technique

- Position polyp in 5-6 o'clock position
- Optimal working distance of 2-3 cm
- Accurate snare placement with normal mucosa around polyp

		Highly Skilled	Competent and safe, no uncorrected errors	Some standards not yet met, aspects to be improved, some errors uncorrected	Accepted standards not met, frequent errors uncorrected	Not applicable/assessable
		4	3	2	1	n/a
1	Achieves optimal polyp position					
2	Optimizes view by aspiration/insufflation/wash					
3	Adjusts/stabilizes scope position					
4	Directs snare accurately over the lesion					
5	Anchors sheath of snare several mm distal to polyp					
6	Keeps tools close to scope					
7	Appropriate positioning of snare over lesion as snare closed					
8	Ensures appropriate amount of tissue is trapped within snare					
9	Ensures rim of normal tissue is resected around polyp					
10	Examines post-polypectomy site	- -				
11	Identifies and appropriately treats residual polyp	-				
12	Retrieves, or attempts, retrieval of polyp					

Cold Snare vs. Hot Snare Polypectomy

- Meta-analysis of 8 RCTs for CSP vs. HSP for small polyps
 - Complete resection rate: RR 1.02; 95% CI 0.98-1.07
 - Polyp retrieval rate: RR 1.00; 95% CI 1.00-1.01
 - Increased procedure duration with HSP: mean difference 7.13 min; 95% CI 5.32-8.94
- Meta-analysis of 12 RCTs for CSP vs. HSP for diminutive polyps
 - Complete resection rate: OR 0.86; 95% CI 0.60-1.24

Qu et al. Journal of Gastroenterology and Hepatology. 34 (2019) 49–58; Shinozaki et al. Digestive Endoscopy. 2018; 30: 592–599.

Cold Snare vs. Hot Snare Polypectomy

- CSP is associated with lower rates of delayed postpolypectomy bleeding (DPPB)
- Safety endpoint of delayed hemorrhage difficult to demonstrate in RCTs of polyps < 10 mm
 - Trend toward higher rate of DPPB with HSP in one metaanalysis: RR 7.35; 95% CI 0.91-59.33
- CSP is equally effective with improved safety as compared to HSP

Qu et al. Journal of Gastroenterology and Hepatology. 34 (2019) 49–58; Shinozaki et al. Digestive Endoscopy. 2018; 30: 592–599.

Cold Snare vs. Cold Biopsy Forceps

- RCT of 54 patients (117 polyps, mean size 3.66 mm) removed with CSP vs. CFP
 - Higher rates of complete eradiation with CSP: 93.2%
 vs. 75.9%; p = 0.009
 - CSP faster: 14.3 vs. 22.0 secs, p < 0.001</p>

Cold Biopsy Forceps

- Meta-analysis of 5 RCTs of 721 polyps < 7 mm comparing CBF vs. jumbo forceps and CSP
 - Higher incomplete polyp resection rate with CBF (19.0% vs. 11.4%)
- Prospective observational cohort of 955 diminutive polyps removed with jumbo forceps
 - 99.4% endoscopic complete resection rate
 - Lesions > 3 mm significantly associated with local recurrence (OR 3.4; p = 0.02)

CSP vs. Jumbo Forceps Polypectomy

- RCT of 169 patients with 196 diminutive polyps
 - No difference complete resection rates (92.0% vs.
 92.2%), polypectomy time, tissue retrieval rate, or AE
- RCT of 151 patients with 261 polyps < 6 mm
 - No difference in complete resection rates
 - Jumbo forceps polypectomy with higher tissue retrieval rate (100% vs. 95.7%; p = 0.02)

Huh et al. Gastrointestinal Endoscopy. 2019; 90(1):105-111; Desai et al. Surgical Endoscopy. (2020) 34:1206–1213.

USMSTF Guidelines

- Diminutive (≤ 5 mm) and small (6-9 mm) lesions
 - Recommend using CSP due to high complete resection rates and safety profile (strong recommendation, high-quality evidence)
 - Recommend against the use of CFP to remove diminutive (≤ 5 mm) lesions due to high rates of incomplete resection (strong recommendation, moderate-quality evidence)
 - For lesions ≤ 2 mm, jumbo or large-capacity forceps may be considered if CSP is technically difficult
 - Recommend against the use of HBF due to high incomplete resection rates, inadequate histopathologic specimens, and complication rates (strong recommendation, moderate-quality evidence)

Kaltenbach et al. Gastroenterology. 2020;158:1095–1129.

Distal Attachment Devices

- Distal attachment transparent cap
- Distal attachment cuff
 - 1st generation: two rows of soft finger-like projections
 - 2nd generation: one row of finger-like projections with blunter tips
 - Decrease incidence of mucosal lacerations/erosions

Cap-Assisted (CAP) vs. Standard Colonoscopy

- Marginal benefit for polyp detection (RR 1.08; 95% CI 1.00-1.17)
- Shorter cecal intubation time (MD -0.64 min; 95% CI -1.19 to -0.10)
- No difference in cecal intubation rate and total colonoscopy time

	CAC	SC			
Study, year	n,N	n,N	RR (95% CI)	RR (95% CI)	
Kondo (2007)	109/221	92/235	1.26 (1.02, 1.55)		-
Horiuchi (2008)	123/424	99/411	1.20 (0.96, 1.51)		-
Takano (2008)	605/1287	518/1215	1.10 (1.01, 1.20)		
Harada (2009)	120/279	122/288	1.02 (0.84, 1.23)	p	
Lee (2009)	152/499	188/501	0.81 (0.68, 0.97)		
Hewett (2010)	34/52	33/48	0.95 (0.72, 1.25)		
Dai (2010)	19/121	19/129	1.07 (0.59, 1.91)		
Tee (2010)	63/192	61/195	1.05 (0.78, 1.40)		
Takeuchi (2010)	98/141	83/133	1.11 (0.94, 1.32)		
Lee (2011)	72/127	59/133	1.28 (1.00, 1.63)		_
Rastogi (2011)	144/210	117/210	1.23 (1.06, 1.43)		
de Wijkerslooth (2011)	189/656	196/683	1.00 (0.85, 1.19)	+	
Total (95% CI)	1728/4209	1587/4181	1.08 (1.00, 1.17)	◆	
Heterogeneity: $\tau^2 = 0.01$; $\chi^2 =$	20.42, df = 11 (P =			<u> </u>	
Test for overall effect: $Z = 2.0$	5 (P = 0.04)		0	5 U.7 1 1.	.5 2
				Eavors SC Eavor	s CAC

Ng et al. Am J Gastro. 2012; 107:1165-1173.

Endocuff-Assisted vs. Standard Colonoscopy

- EAC improves:
 - Adenoma detection rate (ADR)
 - Polyp detection rate (PDR)
 - Sessile serrated lesion detection rate (SDR)
 - Left-side lesion detection rate (LDR)
 - # of adenomas/patient (MAP)

Outcomes	No.	EAC %	SC %	RR (95% CI)	р	I ²
ADR	23	44.9 (37.6-52.1)	39.1 (32.3-45.9)	1.16 (1.08-1.24)	< 0.00001	65%
Device						
Endocuff	11	43.3 (35.9-50.6)	36.3 (27.1-45.6)	1.22 (1.07-1.40)	< 0.00001	78%
Enducuff Vision	12	46.3 (35.0-57.6)	41.7 (31.5-51.9)	1.12 (1.05-1.20)	0.11	35%
Indication						
Screening	7	38.7 (24.3-53.1)	32.6 (20.5-44.7)	1.20 (1.06, 1.37)	0.001	73%
Mixed	16	47.4 (42.1–52.8)	42 (35.6-48.4)	1.14 (1.05, 1.23)	0.0007	61%
Baseline ADR						
< 50%	17	39.4 (31.8-46.9)	32.9 (26.4-39.4)	1.24 (1.13, 1.36)	< 0.0001	70%
> 50%	6	60.7 (54.7-66.8)	57.2 (52.2-62.3)	1.04 (0.97, 1.11)	0.50	0
Size						
≥ 10 mm	7	11.7 (8.2-15.1)	11.2 (7.9-14.6)	1.02 (0.91, 1.15)	0.47	0
6–9 mm	4	15 (10.9-19.1)	13.8 (8.6-18.9)	1.10 (0.96, 1.27)	0.29	20%
≤ 5 mm	5	50 (25-75)	49.9 (24.2-75.7)	1.03 (0.95, 1.11)	0.05	59%
PDR	13	54.5 (44.6-64.4)	46.5 (37.2-55.9)	1.17 (1.09-1.25)	0.0008	64%
AADR	7	13.7 (8.0-19.4)	12.7 (7.3-18.1)	1.11 (1.00-1.23)	0.45	0
SDR	10	8.4 (5.8-11.1)	5.9 (4.0-7.8)	1.23 (1.05-1.43)	0.46	0
LDR	6	30.5 (22.7-38.4)	25.5 (17.6-33.4)	1.24 (1.08-1.43)	0.08	43%
RDR	9	28.7 (23.3-34)	25.2 (19.7-30.7)	1.21 (1.00-1.46)	< 0.00001	83%
Ileal intubation rate	7	61 (43.6-78.5)	68 (50.9-85)	0.89 (0.80-0.99)	0.0001	78%
Cecal intubation rate	8	97.4 (96.7–98.2)	96.9 (95.4–98.3)	1.00 (1.00-1.01)	0.29	18%
Adverse events	16	-	-	2.6 (1.29-5.26)	0.01	51%
				MD (95% CI)	р	I^2
MAP	10	-	-	0.17 (0.08-0.26)	< 0.00001	78%
MPP	4	-	-	0.16 (0-0.32)	< 0.00001	93%
Withdrawal time	8	-	-	- 0.29 (- 0.91, 0.33)	0.004	66%
Cecal intubation time	5	-	-	-0.60(-1.45, 0.26)	0.002	77%

Endocuff-Assisted (EAC) vs. Cap-Assisted Colonoscopy (CAC)

- No difference in ADR (47.0% vs. 45.1%), cecal intubation time, withdrawal time
- Small increase in cecal intubation rate with CAC vs. EAC (97.9% vs. 96.5%, p = 0.04)

a	Experimental		Control		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Bensuleiman2016	44	84	44	75	13.9%	0.78 [0.41, 1.45]		
Floer2018	55	189	53	189	18.7%	1.05 [0.67, 1.65]		
Imaeda2019	127	250	136	258	21.7%	0.93 [0.65, 1.31]		
Marsano2019	23	42	17	42	9.5%	1.78 [0.75, 4.23]		
Rameshshanker2019	40	76	20	78	12.8%	3.22 [1.63, 6.35]		
Sola-Vera2019	180	357	179	354	23.4%	0.99 [0.74, 1.33]	+	
Total (95% CI)		998		996	100.0%	1.17 [0.85, 1.62]	+	
Total events	469		449					
Heterogeneity: Tau ² = 0.	09; Chi ² =	13.37, d	f=5(P=	0.02);	² = 63%			
Test for overall effect: Z:	= 0.97 (P =	0.33)					Favours CAC Favours EAC	

Li et al. Journal of Gastroenterology and Hepatology. 35 (2020) 2066-2073.

Endocuff-Assisted (EAC) vs. Cap-Assisted Colonoscopy (CAC)

- EAC improves detection of a) diminutive polyps
- No difference for detection of b) small or c) large polyps

а	Evnerin	ental	Cont	rol		Odds Ratio	Odds Ratio
Study or Subaroup	Events	Total	Events	Total	Weight	M-H. Fixed, 95% CI	M.H. Fixed, 95% CI
Imaeda2019	219	338	171	310	38.3%	1.50 [1.09. 2.05]	
Rameshshanker2019	57	111	26	50	10.6%	0.97 [0.50, 1.90]	
Sola-Vera2019	251	393	231	389	51.1%	1.21 [0.91, 1.61]	
Total (95% CI)		842		749	100.0%	1.29 [1.06, 1.58]	•
Total events	527		428				
Heterogeneity: Chi ² = 1.	71, df = 2 (P = 0.42); $l^2 = 0\%$				
Test for overall effect: Z	= 2.49 (P =	0.01)					0.5 0.7 1 1.5 2 Favours CAC Favours EAC
b							
~	Experim	ental	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Imaeda2019	62	338	63	310	30.6%	0.88 [0.60, 1.30]	
Rameshshanker2019	26	111	19	50	11.4%	0.50 [0.24, 1.03]	
Sola-Vera2019	368	524	343	526	58.0%	1.26 [0.97, 1.63]	-
Total (95% CI)		973		886	100.0%	1.06 [0.86, 1.30]	+
Total events	456		425				
Heterogeneity: Chi ² = 6.	75, df = 2 (P = 0.03); l ² = 70 ⁴	%			
Test for overall effect: Z	= 0.52 (P =	0.60)					
-							Favours CAC Favours EAC
	Experime	ental	Contro	ol		Odds Ratio	Odds Batio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Imaeda2019	62	338	63	310	40.1%	0.88 (0.60, 1.30)	
Rameshshanker2019	28	111	5	50	17.3%	3.04 [1.10, 8.41]	
Sola-Vera2019	70	524	90	526	42.5%	0.75 [0.53, 1.05]	-
Total (95% CI)		973		886	100.0%	1.02 [0.61, 1.71]	➡
Total events	160		158				
Heterogeneity: Tau ² = 0. Test for overall effect: Z =	14; Chi ² = 6 = 0.07 (P =	6.59, df = 0.95)	2 (P= 0.	.04); l²=	= 70%		0.05 0.2 1 5 20 Favours CAC Favours EAC

Water Exchange (WE) vs. Accessory Devices

- WE and Endocuff significantly improve ADR compared to air insufflation (AI)
- WE significantly improves AADR

Detachable Loop Ligating Device

Chandrasekhara et al. Gastrointestinal Endoscopy. 2021; 7:283-293.

Endoscopic Powered Resection Device

Kandiah et al. *Endoscopy International Open*. 2019; 7(8):E974-978; Kaul et al. *Gastrointestinal Endoscopy*. 2021; 93(3):640-646; Wilson et al. *VideoGIE*. 2023; 8(5):211-216.

Endoscopic Powered Resection Device

Kaul et al. Gastrointestinal Endoscopy. 2021; 93(3):640-646; Wilson et al. VideoGIE. 2023; 8(5):211-216.

Outcomes of Endoscopic Powered Resection Device

	# of cases	Lesion location	Prior resection attempts (%)	Results	Adverse events
Vivek Kaul et al ¹	41	Colorectal (21) Esophagus (8) Duodenum (5)	35/41 (85.4%)	 Technical success: 40/41 19/24 without histologic or endoscopic recurrence on follow up 	 3/41 cases Postprocedural chest pain (n=1) Delayed bleeding (n=2)
Kesavan Kandiah et al ²	19	Colorectal (19)	19/19 (100%)	 84% overall cure rate 10 patients cured after 1st attempt 6 patients required 2nd EPR procedure to achieve cure 	None

Kandiah et al. *Endoscopy International Open*. 2019; 7(8):E974-978; Kaul et al. *Gastrointestinal Endoscopy*. 2021; 93(3):640-646; Wilson et al. *VideoGIE*. 2023; 8(5):211-216.

Full Thickness Resection Device

Meier et al. Am J Gastroenterol. 2020; 115:1998-2006.

Schmidt et al. *Gut.* 2018; 67:1280-1289.

German colonic FTRD registry

Meier et al. Am J Gastroenterol. 2020; 115:1998-2006.

"FTRD® System." Ovesco Endoscopy AG, ovesco.com/ftrd-system/.

References

- Aziz Muhammad et al. "Efficacy of Endocuff Vision Compared to First-Generation Endocuff in Adenoma Detection Rate and Polyp Detection Rate in High-Definition Colonoscopy: A Systematic Review and Network Meta-Analysis." *Endoscopy International Open.* vol. 09, no. 01, 2021, https://doi.org/10.1055/a-1293-7327.
- "CaptivatorTM Cold Single-Use Snare." Www.Bostonscientific.Com, www.bostonscientific.com/en-US/products/snares/captivator-cold-single-use-snare.html. Accessed 29 May 2023.
- Chandrasekhara, Vinay, et al. "Endoscopic Polypectomy Devices." Gastrointestinal Endoscopy. vol. 94, no. 1, 2021, pp. 1–2, https://doi.org/10.1016/j.gie.2021.02.005.
- Desai Shireena et al. "A Prospective Randomized Study Comparing Jumbo Biopsy Forceps to Cold Snare for the Resection of Diminutive Colorectal Polyps." *Surgical Endoscopy.* vol. 34, no. 3, 2019, pp. 1206–1213, https://doi.org/10.1007/s00464-019-06874-z.
- Din S, Ball A J, Riley S A, et al. Cold snare polypectomy: does snare type influence outcomes? Dig Endosc. 2015;27:603–608.
- Dwyer Jeremy et al. "A Prospective Comparison of Cold Snare Polypectomy Using Traditional or Dedicated Cold Snares for the Resection of Small Sessile Colorectal Polyps." *Endoscopy International Open*, vol. 05, no. 11, 2017, https://doi.org/10.1055/s-0043-113564.
- "FTRD® System." Ovesco Endoscopy AG, ovesco.com/ftrd-system/. Accessed 29 May 2023.
- Huh, Cheal Wung, et al. "Jumbo Biopsy Forceps versus Cold Snares for Removing Diminutive Colorectal Polyps: A Prospective Randomized Controlled Trial." *Gastrointestinal Endoscopy.* vol. 90, no. 1, 2019, pp. 105–111, https://doi.org/10.1016/j.gie.2019.01.016.
- Kaltenbach Tonya et al. "Spotlight: US Multi-Society Task Force on Colorectal Cancer Recommendations for Endoscopic Removal of Colorectal Lesions." *Gastroenterology*. vol. 158, no. 4, 2020, p. 1130, https://doi.org/10.1053/j.gastro.2020.02.015.
- Kandiah. Kesavan. et al. "A Novel Non-Thermal Resection Tool in Endoscopic Management of Scarred Polyps." *Endoscopy International Open.* vol. 07, no. 08, 2019, https://doi.org/10.1055/a-1009-3407.
- Kaul Vivek et al. "Safety and Efficacy of a Novel Powered Endoscopic Debridement Tissue Resection Device for Management of Difficult Colon and Foregut Lesions: First Multicenter U.S. Experience." *Gastrointestinal Endoscopy*. vol. 93, no. 3, 2021, pp. 640–646, https://doi.org/10.1016/j.gie.2020.06.068.
- Konda Vani et al. "Endoscopes and Devices to Improve Colon Polyp Detection." Gastrointestinal Endoscopy. vol. 81, no. 5, 2015, pp. 1122–1129, https://doi.org/10.1016/j.gie.2014.10.006.
- Kuwai Toshio et al. "Local Recurrence of Diminutive Colorectal Polyps after Cold Forceps Polypectomy with Jumbo Forceps Followed by Magnified Narrow-Band Imaging: A Multicenter Prospective Study." *Endoscopy.* vol. 51, no. 03, 2019, pp. 253–260, https://doi.org/10.1055/a-0833-8548.

References

- Horiuchi A, Hosoi K, Kajiyama M, et al. Prospective, randomized comparison of 2 methods of cold snare polypectomy for small colorectal polyps. Gastrointest Endosc. 2015;82:686–692.
- Lee, Chang Kyun, et al. "Cold Snare Polypectomy vs. Cold Forceps Polypectomy Using Double-Biopsy Technique for Removal of Diminutive Colorectal Polyps: A Prospective Randomized Study." *American Journal of Gastroenterology*. vol. 108, no. 10, 2013, pp. 1593–1600, https://doi.org/10.1038/ajg.2013.302.
- Li Ai et al. "Endocuff-assisted Colonoscopy versus Cap-assisted Colonoscopy for Adenoma Detection Rate: A Meta-analysis of Randomized Controlled Trials." Journal of Gastroenterology and Hepatology, vol. 35, no. 12, 2020, pp. 2066–2073, https://doi.org/10.1111/jgh.15155.
- Meier Benjamin et al. "Efficacy and Safety of Endoscopic Full-Thickness Resection in the Colorectum: Results from the German Colonic FTRD Registry." American Journal of Gastroenterology. vol. 115, no. 12, 2020, pp. 1998–2006, https://doi.org/10.14309/ajg.0000000000795.
- Ng, Siew C, et al. "The Efficacy of Cap-Assisted Colonoscopy in Polyp Detection and Cecal Intubation: A Meta-Analysis of Randomized Controlled Trials." *American Journal of Gastroenterology.* vol. 107, no. 8, 2012, pp. 1165–1173, https://doi.org/10.1038/ajg.2012.135.
- Qu Junyan et al. "Effectiveness and Safety of ColdversusHot Snare Polypectomy: A Meta-Analysis." Journal of Gastroenterology and Hepatology. vol. 34, no. 1, 2018, pp. 49–58, https://doi.org/10.1111/jgh.14464.
- Patel Swati G et al. "Development and Validation of a Video-Based Cold Snare Polypectomy Assessment Tool (with Videos)." Gastrointestinal Endoscopy. vol. 89, no. 6, 2019, https://doi.org/10.1016/j.gie.2019.02.018.
- Raad Dany et al. "Role of the Cold Biopsy Technique in Diminutive and Small Colonic Polyp Removal: A Systematic Review and Meta-Analysis." Gastrointestinal Endoscopy. vol. 83, no. 3, 2016, pp. 508–515, https://doi.org/10.1016/j.gie.2015.10.038.
- Schmidt Arthur et al. "Colonoscopic Full-Thickness Resection Using an over-the-Scope Device: A Prospective Multicentre Study in Various Indications." Gut. vol. 67, no. 7, 2018, pp. 1280–1289, https://doi.org/10.1136/gutjnl-2016-313677.
- Shao Paul P et al. "Adenoma and Advanced Adenoma Detection Rates of Water Exchange, Endocuff, and Cap Colonoscopy: A Network Meta-Analysis with Pooled Data of Randomized Controlled Trials." Digestive Diseases and Sciences. vol. 66, no. 4, 2020, pp. 1175–1188, https://doi.org/10.1007/s10620-020-06324-0.
- Shinozaki Satoshi et al. "Efficacy and Safety of Cold versus Hot Snare Polypectomy for Resecting Small Colorectal Polyps: Systematic Review and Meta-analysis." *Digestive Endoscopy.* vol. 30, no. 5, 2018, pp. 592–599, https://doi.org/10.1111/den.13173.
- Wang J et al. "Endocuff-Assisted versus Standard Colonoscopy for Improving Adenoma Detection Rate: Meta-Analysis of Randomized Controlled Trials." *Techniques in Coloproctology*. vol. 27, no. 2, 2022, pp. 91–101, https://doi.org/10.1007/s10151-022-02642-9.
- Wilson Natalie et al. "Use of the Endoscopic Powered Resection Device for the Management of Scarred Polyps." VideoGIE. vol. 8, no. 5, 2023, pp. 211–216, https://doi.org/10.1016/j.vgie.2023.01.009.